By Topic

A combined approach of formal concept analysis and text mining for concept based document clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Nowadays, the demand of conceptual document clustering is becoming increase to manage various types of vast amount of information published on the World Wide Web. In this paper, we use formal concept analysis (FCA) method for clustering documents according to their formal contexts. Concept hierarchy of documents is built using the formal concepts of the documents in the document corpus. We use tf.idf (term frequency × inverse document frequency) term weighting model to reduce less useful concepts from these formal concepts and the association and correlation mining techniques to analyze the relationship of terms in the document corpus.

Published in:

Web Intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM International Conference on

Date of Conference:

19-22 Sept. 2005