By Topic

A novel framework for network intrusion detection using learning techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wei Lu ; Dept. of Electr. & Comput. Eng., Victoria Univ., BC, Canada

We propose in this paper a novel network intrusion detection framework based on learning techniques. The main goal of our framework is to detect known as well as unknown or novel attacks on networks. Our detection approach combines three learning techniques, namely inductive logic programming (ILP), genetic programming (GP) and Bayesian probability theorem. Each technique detects the intrusion independently and then makes a decision about whether the network behavior is intrusive or normal. A voting mechanism is proposed to give the final intrusion decision. In theory, our framework has lower false alarm rate than other approaches since we use the voting mechanism and combine several detection techniques.

Published in:

Communications, Computers and signal Processing, 2005. PACRIM. 2005 IEEE Pacific Rim Conference on

Date of Conference:

24-26 Aug. 2005