Scheduled System Maintenance:
On April 27th, single article purchases and IEEE account management will be unavailable from 2:00 PM - 4:00 PM ET (18:00 - 20:00 UTC).
We apologize for the inconvenience.
By Topic

Systolic array implementation of a real-time symbol-optimum multiuser detection algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Chung-Chin Lu ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Jau-Yuan Hsu ; Chih-Chung Cheng

This paper presents the systolic array implementation of a real-time symbol-optimum multiuser detection (MUD) algorithm for a direct-sequence code-division multiple-access system by truncating the backward recursions in the generalized forward/backward schedule. Simulation results show that the real-time algorithm provides negligible performance loss compared to the original symbol-optimum detection algorithm. The systolic array implementation is derived in this paper through the factor graph language of the real-time algorithm in order to exploit the suitability of the algorithm for parallel signal processing.

Published in:

Communications, IEEE Transactions on  (Volume:53 ,  Issue: 10 )