By Topic

Adaptive opportunistic fair scheduling over multiuser spatial channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chuxiang Li ; Dept. of Electr. Eng., Columbia Univ., New York, NY, USA ; Xiaodong Wang

We consider the problem of opportunistic fair scheduling (OFS) of multiple users in downlink time-division multiple-access (TDMA) systems employing multiple transmit antennas and beamforming. OFS is an important technique in wireless networks to achieve fair bandwidth usage among users, which is performed on a per-frame basis at the media access control layer. Multiple-transmit-antenna beamforming provides TDMA systems with the capability of supporting multiple concurrent transmissions, i.e., multiple spatial channels at the physical layer. Given a particular subset of users and their channel conditions, the optimal beamforming scheme can be calculated. The multiuser opportunistic scheduling problem then refers to the selection of the optimal subset of users for transmission at each time instant to maximize the total throughput of the system subject to a certain fairness constraint on each individual user's throughput. We propose discrete stochastic approximation algorithms to adaptively select a better subset of users. We also consider scenarios of time-varying channels for which the scheduling algorithm can track the time-varying optimal user subset. We present simulation results to demonstrate the performance of the proposed scheduling algorithms in terms of both throughput and fairness, their fast convergence, and the excellent tracking capability in time-varying environments.

Published in:

Communications, IEEE Transactions on  (Volume:53 ,  Issue: 10 )