By Topic

Turbo codes with rate-m/(m+1) constituent convolutional codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Douillard, C. ; Electron. Dept., GET/Ecole Nat. Superieure des Telecommun. de Bretagne, Brest, France ; Berrou, C.

The original turbo codes (TCs), presented in 1993 by Berrou et al., consist of the parallel concatenation of two rate-1/2 binary recursive systematic convolutional (RSC) codes. This paper explains how replacing rate-1/2 binary component codes by rate-m/(m+1) binary RSC codes can lead to better global performance. The encoding scheme can be designed so that decoding can be achieved closer to the theoretical limit, while showing better performance in the region of low error rates. These results are illustrated with some examples based on double-binary (m=2) 8-state and 16-state TCs, easily adaptable to a large range of data block sizes and coding rates. The double-binary 8-state code has already been adopted in several telecommunication standards.

Published in:

Communications, IEEE Transactions on  (Volume:53 ,  Issue: 10 )