By Topic

EMI reduction in switched power converters using frequency Modulation techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Balcells, J. ; Electron. Eng. Dept., Univ. Politecnica de Catalunya, Barcelona, Spain ; Santolaria, A. ; Orlandi, A. ; Gonzalez, D.
more authors

Frequency-modulation techniques have been used to reduce electromagnetic interference (EMI) produced by the clock of digital systems working in the range of hundreds of megahertz. The working principle consists of modulating the original constant clock frequency in order to spread the energy of each single harmonic into a certain frequency band, thus reducing the peak amplitude of EMI at harmonic frequencies. Nowadays, the switching frequency of power converters has increased up to values that make interesting the application of such techniques to reduce EMI emissions due to switching of power circuits. This paper presents the theoretical principles of frequency modulation using deterministic profiles for the modulating function. It shows the effectiveness of such methods in terms of EMI reduction for different modulation profiles and other parameters. The method is compared with other methods using random modulation. Tests carried out on a buck converter are presented for experimental validation of the method. A short discussion on optimal modulation profiles and parameters is also included.

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:47 ,  Issue: 3 )