Cart (Loading....) | Create Account
Close category search window

Three-dimensional thin-film Li-ion microbatteries for autonomous MEMS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Nathan, Menachem ; Dept. of Phys. Electron., Tel Aviv Univ., Israel ; Golodnitsky, D. ; Yufit, V. ; Strauss, E.
more authors

Autonomous MEMS require similarly miniaturized power sources. In this paper, we present the first working three-dimensional (3-D) rechargeable Li-ion thin-film microbattery technology that is compatible with MEMS requirements. The technology has been developed, and full 3-D cells have been manufactured on both glass and silicon substrates. Our 3-D microbatteries have a sandwich-like structure of conformal thin-film electrodes, electrolyte and current collectors. The films are deposited sequentially on all available surfaces of a perforated substrate (e.g., silicon or a glass microchannel plate or "MCP") using wet chemistry. The substrate has thousands of high-aspect ratio holes per square cm, thereby providing more than an order of magnitude increase in surface area per given footprint (original 2-D substrate area). The full 3-D cell consists of a Ni cathode current collector, a MoOySz cathode, a hybrid polymer electrolyte (HPE) and a lithiated graphite anode that also serves as anode current collector. One 3-D cell with a roughly 1-μm-thick cathode ran at C/10 to 2C charge/discharge rates and room temperature for 200 cycles with 0.2% per cycle capacity loss and about 100% Faradaic efficiency. The cell exhibited a capacity of 2 mAh/cm2, about 30times higher than the capacity of a similarly built planar (2-D) cell with the same footprint and same cathode thickness.

Published in:

Microelectromechanical Systems, Journal of  (Volume:14 ,  Issue: 5 )

Date of Publication:

Oct. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.