By Topic

Characterization of digital waveforms using thermodynamic analogs: applications to detection of materials defects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hughes, M.S. ; Washington Univ. Sch. of Med., St. Louis, MO, USA ; Marsh, J.N. ; Hall, C.S. ; Savery, D.
more authors

We describe characterization of digital signals using analogs of thermodynamic quantities: the topological entropy, Shannon entropy, thermodynamic energy, partition function, specific heat at constant volume, and an idealized version of Shannon entropy in the limit of digitizing with infinite dynamic range and sampling rate. We show that analysis based on these quantities is capable of detecting differences between digital signals that are undetectable by conventional methods of characterization based on peak-to-peak amplitude or signal energy. We report the results of applying thermodynamic quantities to a problem from nondestructive materials evaluation: detection of foreign objects (FO) embedded near the surface of thin graphite/epoxy laminates using backscattered waveforms obtained by C-scanning the laminate. The characterization problem was to distinguish waveforms acquired from the region containing the FO from those acquired outside. In all cases the thermodynamic analogs exhibit significant increases (up to 20-fold) in contrast and for certain types of FO materials permit detection when energy or amplitude methods fail altogether.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:52 ,  Issue: 9 )