By Topic

An energy-efficient and low-latency routing protocol for wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. G. Ruzzelli ; Dept. of Comput. Sci., Univ. Coll. Dublin, Ireland ; R. Tynan ; G. M. P. O'Hare

Recent advances in wireless sensors network (WSN) technology have made possible the manufacturing of tiny low-cost, low-power sensors with wireless multi-hop communication and sensing capabilities. Energy conservation for WSNs is a primary objective that needs to be addressed at all layers of the networking protocol stack. In many applications latency is another crucial factor to be addressed. However this must be done in the context of the energy constraints imposed by the network. In this paper we present an experimental evaluation of two node scheduling regimes within MERLIN (MAC energy efficient, routing and localization integrated), an energy-efficient low-latency integrated protocol for WSNs. In particular we contrast the X and V scheduling family schemes with respect to the following properties: network setup time, network lifetime and message latency. We conduct our experiments within the OmNet++ simulator.

Published in:

2005 Systems Communications (ICW'05, ICHSN'05, ICMCS'05, SENET'05)

Date of Conference:

14-17 Aug. 2005