By Topic

Parallel discrete event simulation on shared-memory multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Konas, P. ; Center for Supercomput. Res. & Dev., Urbana, IL, USA ; Pen-Chung Yew

This paper describes the implementation and the performance study of three parallel discrete event simulation methods on a shared memory machine. These methods, which share a single user interface, include the Chandy-Misra paradigm with deadlock avoidance; the Time Warp approach with direct, aggressive, and lazy cancellation; and a hybrid approach, which exploits the parallelism available at each point in simulated time. In this study the authors also examine the impact of task-partitioning and of processor self-scheduling on the efficient implementation of the above methods. Two kinds of systems are simulated: a synchronous multiprocessor machine and an asynchronous toroid network with FCFS server nodes. The performance of the implemented methods is discussed, and conclusions are drawn from the obtained results

Published in:

Simulation Symposium, 1991., Proceedings of the 24th Annual

Date of Conference:

1-5 Apr 1991