By Topic

Architecture and design of an open ATE to incubate the development of third-party instruments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rajsuman, R. ; Advantest America Corp., Santa Clara, CA, USA ; Masuda, N. ; Yamashita, K.

To test next-generation system-on-a-chip (SoC) ICs, an open architecture automatic test equipment (ATE) has been conceived. Open architecture provides a framework to integrate software and instruments of different vendors into the ATE. The specifications of this framework, known as OPENSTAR specifications, have been developed by the Semiconductor Test Consortium (STC). The deployment of third-party instruments and modules in this framework is plug-and-play to achieve the optimal test configuration for a given SoC. In this test system, each modular unit can be replaced with another modular unit from a different vendor, and the tester can be reconfigured to map the test resources according to the requirements of device-under-test (DUT). The only restriction in using the third party modules is that each modular unit must adhere to the standard interfaces of the integrating framework and should conform to the OPENSTAR specifications. Hardware modules can be any functional unit such as a digital pincard, an analog card, device power supply (DPS), instruments such as waveform generator, etc. Similarly, software modules can be a tool or utility such as a test executive tool, system monitoring or licensing tools, unit-level controllers, database, microsoft office utilities, application specific software for controlling equipment, etc. The basic structure of this test system, module structure, calibration/diagnostics and synchronization as well as system reconfigurability is described in this paper.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:54 ,  Issue: 5 )