By Topic

An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Twellman, T. ; Appl. Neuroinformatics Group, Bielefeld Univ., Germany ; Lichte, O. ; Nattkemper, T.W.

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important source of information to aid cancer diagnosis. Nevertheless, due to the multi-temporal nature of the three-dimensional volume data obtained from DCE-MRI, evaluation of the image data is a challenging task and tools are required to support the human expert. We investigate an approach for automatic localization and characterization of suspicious lesions in DCE-MRI data. It applies an artificial neural network (ANN) architecture which combines unsupervised and supervised techniques for voxel-by-voxel classification of temporal kinetic signals. The algorithm is easy to implement, allows for fast training and application even for huge data sets and can be directly used to augment the display of DCE-MRI data. To demonstrate that the system provides a reasonable assessment of kinetic signals, the outcome is compared with the results obtained from the model-based three-time-points (3TP) technique which represents a clinical standard protocol for analysing breast cancer lesions. The evaluation based on the DCE-MRI data of 12 cases indicates that, although the ANN is trained with imprecisely labeled data, the approach leads to an outcome conforming with 3TP without presupposing an explicit model of the underlying physiological process.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:24 ,  Issue: 10 )