By Topic

Causality-based predicate detection across space and time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chandra, P. ; Dept. of Comput. Sci., Illinois Univ., USA ; Kshemkalyani, A.D.

This paper presents event stream-based online algorithms that fuse the data reported from processes to detect causality-based predicates of interest. The proposed algorithms have the following features. 1) The algorithms are based on logical time, which is useful to detect "cause and effect" relationships in an execution. 2) The algorithms detect properties that can be specified using predicates under a rich palette of time modalities. Specifically, for a conjunctive predicate φ, the algorithms can detect the exact finegrained time modalities between each pair of intervals, one interval at each process, with low space, time, and message complexities. The main idea used to design the algorithms is that any "cause and effect" interaction can be decomposed as a collection of interactions between pairs of system components. The detection algorithms, which leverage the pairwise interaction among the processes, incur a low overhead and are, hence, highly scalable. The paper then shows how the algorithms can deal with mobility in mobile ad hoc networks.

Published in:

Computers, IEEE Transactions on  (Volume:54 ,  Issue: 11 )