By Topic

Making robots emotion-sensitive - preliminary experiments and results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. Rani ; Electr. Eng. & Comput. Sci., Vanderbilt Univ., Nashville, TN, USA ; N. Sarkar

It is well known that implicit communication between the communicators plays a significant role in social interactions. It would be immensely useful to have a robotic system that is capable of such implicit communication with the operator and can modify its behavior if required. This paper presents a framework for human-robot interaction in which the operator's physiological signals were analyzed to infer his/her probable anxiety level and robot behavior was adapted as a function of the operator affective state. Peripheral physiological signals were measured through wearable biofeedback sensors and a control architecture inspired by Riley's original information-flow model was developed to implement such human-robot interaction. The target affective state chosen in this work was anxiety. The results from affect-elicitation tasks for human participants showed that it is possible to detect anxiety through physiological sensing in real-time. A robotic experiment was also conducted to demonstrate that the presented control architecture allowed the robot to adapt its behavior based on operator anxiety level.

Published in:

ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, 2005.

Date of Conference:

13-15 Aug. 2005