Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Optical and Interferometric Lithography - Nanotechnology Enablers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Brueck, S.R.J. ; New Mexico Univ., Albuquerque, NM, USA

Interferometric lithography (IL), the interference of a small number of coherent optical beams, is a powerful technique for the fabrication of a wide array of samples of interest for nanoscience and nanotechnology. The techniques and limits of IL are discussed with particular attention to the smallest scales achievable. With immersion techniques, the smallest pattern size for a single exposure is a half-pitch of λ/4n where λ is the optical wavelength and n is the refractive index of the immersion material. Currently with a 193-nm excimer laser source and H2O immersion, this limiting dimension is ∼34 nm. With nonlinear spatial frequency multiplication techniques, this limit is extended by factors of 1/2, 1/3, etc.-extending well into the nanoscale regime. IL provides an inexpensive, large-area capability as a result of its parallelism. Multiple exposures, multiple beams, and mix-and-match with other lithographies extend the range of applicability. Imaging IL provides an approach to arbitrary structures with comparable resolution. Numerous application areas, including nanoscale epitaxial growth for semiconductor heterostructures; nanofluidics for biological separations; nanomagnetics for increased storage density; nanophotonics including distributed feedback and distributed Bragg reflectors, two- and three-dimensional photonic crystals, metamaterials, and negative refractive index materials for enhanced optical interactions are briefly reviewed.

Published in:

Proceedings of the IEEE  (Volume:93 ,  Issue: 10 )