By Topic

Robust and precision motion control system of linear-motor direct drive for high-speed X-Y table positioning mechanism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zuo Zong Liu ; Shandong Technol. Univ., Jinan, China ; Fang Lin Luo ; Azizur Rahman, M.

In this paper, design and implementation of an H-based precision motion control system is presented for a high-speed linear-motor direct-drive X-Y table positioning mechanism in semiconductor wire-bonding applications. The system works with a cascaded robust feedback control, which has an inner loop velocity controller and an outer loop position controller, and an autotuning feedforward compensator. The design aim is to achieve high and consistent tracking performance even in the presence of considerable resonance uncertainties and external disturbances. Toward this aim the velocity controller is designed using H optimization technique, based on reduced-order modeling that considers three significant resonance modes and neglects all other resonance modes having an insignificant amplitude and/or too high frequency. These neglected modes and variations of the three resonance modes from machine to machine (due to manufacturing tolerance) and/or with different operating conditions are taken care of by appropriate additive uncertainty representation in the design phase. The resulting system is validated and implemented with a profile motion of a maximum acceleration of 5.2 g (1g=9.81 m/s2) on mass-produced wire bonding machines.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:52 ,  Issue: 5 )