By Topic

Properties of optimum binary message-passing decoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ardakani, M. ; Edward S. Rogers Sr. Dept. of Electr. & Comput. Eng., Univ. of Toronto, Ont., Canada ; Kschischang, F.R.

We consider a class of message-passing decoders for low-density parity-check (LDPC) codes whose messages are binary valued. We prove that if the channel is symmetric and all codewords are equally likely to be transmitted, an optimum decoding rule (in the sense of minimizing message error rate) should satisfy certain symmetry and isotropy conditions. Using this result, we prove that Gallager's Algorithm B achieves the optimum decoding threshold among all binary message-passing decoding algorithms for regular codes. For irregular codes, we argue that when the nodes of the message-passing decoder do not exploit knowledge of their decoding neighborhood, optimality of Gallager's Algorithm B is preserved. We also consider the problem of designing irregular LDPC codes and find a bound on the achievable rates with Gallager's Algorithm B. Using this bound, we study the case of low error-rate channels and analytically find good degree distributions for them.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 10 )