Cart (Loading....) | Create Account
Close category search window
 

Signature optimization for CDMA with limited feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Santipach, Wiroonsak ; Dept. of Electr. & Comput. Eng., Northwestern Univ., Evanston, IL, USA ; Honig, M.L.

We study the performance of joint signature-receiver optimization for direct-sequence code-division multiple access (DS-CDMA) with limited feedback. The receiver for a particular user selects the signature from a signature codebook, and relays the corresponding B index bits to the transmitter over a noiseless channel. We study the performance of a random vector quantization (RVQ) scheme in which the codebook entries are independent and isotropically distributed. Assuming the interfering signatures are independent, and have independent and identically distributed (i.i.d.) elements, we evaluate the received signal-to-interference plus noise ratio (SINR) in the large system limit as the number of users, processing gain, and feedback bits B all tend to infinity with fixed ratios. This SINR is evaluated for both the matched filter and linear minimum mean-squared error (MMSE) receivers. Furthermore, we show that this large system SINR is the maximum that can be achieved over any sequence of codebooks. Numerical results show that with the MMSE receiver, one feedback bit per signature coefficient achieves close to single-user performance. We also consider a less complex and suboptimal reduced-rank signature optimization scheme in which the user's signature is constrained to lie in a lower dimensional subspace. The optimal subspace coefficients are scalar-quantized and relayed to the transmitter. The large system performance of the quantized reduced-rank scheme can be approximated, and numerical results show that it performs in the vicinity of the RVQ bound. Finally, we extend our analysis to the scenario in which a subset of users optimize their signatures in the presence of random interference.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 10 )

Date of Publication:

Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.