By Topic

Generalized coset codes for distributed binning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. S. Pradhan ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; K. Ramchandran

In many multiterminal communication problems, constructions of good source codes involve finding distributed partitions (into bins) of a collection of quantizers associated with a group of source encoders. Further, computationally efficient procedures to index these bins are also required. In this work, we consider a constructive approach for distributed binning in an algebraic framework. Several application scenarios fall under the scope of this paper including the CEO problem, distributed source coding, and n-channel symmetric multiple description source coding with n>2. Specifically, in this exposition we consider the case of two codebooks while focusing on the Gaussian CEO problem with mean squared error reconstruction and with two symmetric observations. This problem deals with distributed encoding of correlated noisy observations of a source into descriptions such that the joint decoder having access to them can reconstruct the source with a fidelity criterion. We employ generalized coset codes constructed in a group-theoretic setting for this approach, and analyze the performance in terms of distance properties and decoding algorithms.

Published in:

IEEE Transactions on Information Theory  (Volume:51 ,  Issue: 10 )