By Topic

A close-to-capacity dirty paper coding scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
U. Erez ; Dept. of Electr. Eng. & Comput. Sci., Massachusetts Inst. of Technol., Cambridge, MA, USA ; S. ten Brink

The "writing on dirty paper"-channel model offers an information-theoretic framework for precoding techniques for canceling arbitrary interference known at the transmitter. It indicates that lossless precoding is theoretically possible at any signal-to-noise ratio (SNR), and thus dirty-paper coding may serve as a basic building block in both single-user and multiuser communication systems. We design an end-to-end coding realization of a system materializing a significant portion of the promised gains. We employ multidimensional quantization based on trellis shaping at the transmitter. Coset decoding is implemented at the receiver using "virtual bits." Combined with iterative decoding of capacity-approaching codes we achieve an improvement of 2dB over the best scalar quantization scheme. Code design is done using the EXIT chart technique.

Published in:

IEEE Transactions on Information Theory  (Volume:51 ,  Issue: 10 )