Cart (Loading....) | Create Account
Close category search window
 

Constrained iterative technique with embedded neural network for dual-polarization radar correction of rain path attenuation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vulpiani, G. ; Dept. of Electr. Eng., L''Aquila Univ., Italy ; Marzano, F.S. ; Chandrasekar, V. ; Sanghun Lim

A new stable backward iterative technique to correct for path attenuation and differential attenuation is presented here. The technique named, neural network iterative polarimetric precipitation estimator by radar (NIPPER), is based on a polarimetric model used to train an embedded neural network, constrained by the measurement of the differential phase along the rain path. Simulations are used to investigate the efficiency, accuracy, and the robustness of the proposed technique. The precipitation is characterized with respect to raindrop size, shape, and orientation distribution. The performance of NIPPER is evaluated by using simulated radar volumes scan generated from S-band radar measurements. A sensitivity analysis is performed in order to evaluate the expected errors of NIPPER. These evaluations show relatively better performance and robustness of the attenuation correction process when compared with currently available techniques.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:43 ,  Issue: 10 )

Date of Publication:

Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.