Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Fault diagnosis and logic debugging using Boolean satisfiability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Smith, A. ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Ont., Canada ; Veneris, A. ; Fahim Ali, M. ; Viglas, A.

Recent advances in Boolean satisfiability have made it an attractive engine for solving many digital very-large-scale-integration design problems. Although useful in many stages of the design cycle, fault diagnosis and logic debugging have not been addressed within a satisfiability-based framework. This work proposes a novel Boolean satisfiability-based method for multiple-fault diagnosis and multiple-design-error diagnosis in combinational and sequential circuits. A number of heuristics are presented that keep the method memory and run-time efficient. An extensive suite of experiments on large circuits corrupted with different types of faults and errors confirm its robustness and practicality. They also suggest that satisfiability captures significant characteristics of the problem of diagnosis and encourage novel research in satisfiability-based diagnosis as a complementary process to design verification.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:24 ,  Issue: 10 )