By Topic

Generating classes of locally orthogonal Gough-Stewart platforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yong Yi ; Electr. & Comput. Eng. Dept., Univ. of Wyoming, Laramie, WY, USA ; J. E. McInroy ; F. Jafari

This paper develops methods for generating classes of orthogonal Gough-Stewart platforms (OGSPs). First, a new, two-parameter class of six-strut OGSPs which leads to isotropic manipulators are found. Next, this class is extended to include redundant Gough-Stewart platforms (GSPs). For an even number of struts, the same algorithm used to generate the six-strut case can be employed. For an odd number of struts, similar essential concepts are used to derive seven-strut and nine-strut OGSPs. Maximization of fault tolerance is implemented for a nine-strut isotropic OGSP. By exploiting invariant properties of the inverse Jacobian, new methods for favorably altering the center of gravity, strut attachment surface, and strut spatial distribution are developed.

Published in:

IEEE Transactions on Robotics  (Volume:21 ,  Issue: 5 )