By Topic

Efficient reconfigurable techniques for VLSI arrays with 6-port switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wu Jigang ; Centre for High Performance Embedded Syst., Nanyang Technol. Univ., Singapore, Singapore ; Srikanthan, T. ; Schroder, H.

This paper proposes an efficient techniques to reconfigure a two-dimensional degradable very large scale integration/wafer scale integration (VLSI/WSI) array under the row and column routing constraints, which has been shown to be NP-complete. The proposed VLSI/WSI array consists of identical processing elements such as processors or memory cells embedded in a 6-port switch lattice in the form of a rectangular grid. It has been shown that the proposed VLSI structure with 6-port switches eliminates the need to incorporate internal bypass within processing elements and leads to notable increase in the harvest when compared with the one using 4-port switches. A new greedy rerouting algorithm and compensation approaches are also proposed to maximize harvest through reconfiguration. Experimental results show that the proposed VLSI array with 6-port switches consistently outperforms the most efficient alternative proposed in literature, toward maximizing the harvest in the presence of fault processing elements.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 8 )