By Topic

The use of piezoelectric ceramics for electric power generation within orthopedic implants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. R. Platt ; Dept. of Mech. Eng., Univ. of Nebraska, Lincoln, USA ; S. Farritor ; K. Garvin ; H. Haider

This paper presents the results of tests that demonstrate the feasibility of using piezoelectric (PZT) ceramics to generate in vivo electrical energy for orthopedic implants. Sensors encapsulated within implants could provide in vivo diagnostic capabilities such as the monitoring of implant duty (i.e., walking) cycle, detecting abnormally asymmetric or high forces, sensing misalignment and early loosening, and early detection of wear. Early diagnosis of abnormalities or impending failure is critical to minimize patient harm. However, the routine use of sensors and microprocessors embedded within orthopedic implants for diagnostic and monitoring purposes has been limited by the lack of a long-term self-contained power source capable of lasting the expected 20-year implant lifetimes. By embedding PZT materials within orthopedic implants, a small amount of the mechanical energy generated during normal physical activity can be converted into useful electrical energy. This in vivo energy source can power embedded microprocessors and sensors for a broad range of biomedical uses. The current work investigates the application of this technology to total knee replacement (TKR) implants, but it is applicable to many other implanted biomedical devices.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:10 ,  Issue: 4 )