By Topic

A model (in)validation approach to gait classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mazzaro, M.C. ; GE Global Res., NY, USA ; Sznaier, M. ; Camps, O.

This paper addresses the problem of human gait classification from a robust model (in)validation perspective. The main idea is to associate to each class of gaits a nominal model, subject to bounded uncertainty and measurement noise. In this context, the problem of recognizing an activity from a sequence of frames can be formulated as the problem of determining whether this sequence could have been generated by a given (model, uncertainty, and noise) triple. By exploiting interpolation theory, this problem can be recast into a nonconvex optimization. In order to efficiently solve it, we propose two convex relaxations, one deterministic and one stochastic. As we illustrate experimentally, these relaxations achieve over 83 percent and 86 percent success rates, respectively, even in the face of noisy data.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 11 )