By Topic

Bayesian modeling of dynamic scenes for object detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sheikh, Y. ; Sch. of Comput. Sci., Univ. of Central Florida, Orlando, FL, USA ; Shah, M.

Accurate detection of moving objects is an important precursor to stable tracking or recognition. In this paper, we present an object detection scheme that has three innovations over existing approaches. First, the model of the intensities of image pixels as independent random variables is challenged and it is asserted that useful correlation exists in intensities of spatially proximal pixels. This correlation is exploited to sustain high levels of detection accuracy in the presence of dynamic backgrounds. By using a nonparametric density estimation method over a joint domain-range representation of image pixels, multimodal spatial uncertainties and complex dependencies between the domain (location) and range (color) are directly modeled. We propose a model of the background as a single probability density. Second, temporal persistence is proposed as a detection criterion. Unlike previous approaches to object detection which detect objects by building adaptive models of the background, the foregrounds modeled to augment the detection of objects (without explicit tracking) since objects detected in the preceding frame contain substantial evidence for detection in the current frame. Finally, the background and foreground models are used competitively in a MAP-MRF decision framework, stressing spatial context as a condition of detecting interesting objects and the posterior function is maximized efficiently by finding the minimum cut of a capacitated graph. Experimental validation of the proposed method is performed and presented on a diverse set of dynamic scenes.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 11 )