By Topic

Estimating the pen trajectories of static signatures using hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nel, E.-M. ; Dept. of Electr. & Electron. Eng., Stellenbosch Univ., South Africa ; du Preez, J.A. ; Herbst, B.M.

Static signatures originate as handwritten images on documents and by definition do not contain any dynamic information. This lack of information makes static signature verification systems significantly less reliable than their dynamic counterparts. This study involves extracting dynamic information from static images, specifically the pen trajectory while the signature was created. We assume that a dynamic version of the static image is available (typically obtained during an earlier registration process). We then derive a hidden Markov model from the static image and match it to the dynamic version of the image. This match results in the estimated pen trajectory of the static image.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 11 )