By Topic

Scalable model-based clustering for large databases based on data summarization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huidong Jin ; Div. of Math. & Inf. Sci., Commonwealth Sci. & Ind. Res. Organ., Canberra, ACT, Australia ; Man-Leung Wong ; Leung, K.S.

The scalability problem in data mining involves the development of methods for handling large databases with limited computational resources such as memory and computation time. In this paper, two scalable clustering algorithms, bEMADS and gEMADS, are presented based on the Gaussian mixture model. Both summarize data into subclusters and then generate Gaussian mixtures from their data summaries. Their core algorithm, EMADS, is defined on data summaries and approximates the aggregate behavior of each subcluster of data under the Gaussian mixture model. EMADS is provably convergent. Experimental results substantiate that both algorithms can run several orders of magnitude faster than expectation-maximization with little loss of accuracy.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 11 )