By Topic

Accurate and reliable diagnosis and classification using probabilistic ensemble simplified fuzzy ARTMAP

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chu Kiong Loo ; Fac. of Eng. & Technol., Multimedia Univ., Melaka, Malaysia ; Rao, M.V.C.

In this paper, an accurate and effective probabilistic plurality voting method to combine outputs from multiple simplified fuzzy ARTMAP (SFAM) classifiers is presented. Five ELENA benchmark problems and five medical benchmark data sets have been used to evaluate the applicability and performance of the proposed probabilistic ensemble simplified fuzzy ARTMAP (PESFAM) network. Among the five benchmark problems in ELENA project, PESFAM outperforms the SFAM and multi-layer perceptron (MLP) classifier. In addition, the effectiveness of the proposed PESFAM is delineated in medical diagnosis applications. For the medical diagnosis and classification problems, PESFAM achieves 100 percent in accuracy, specificity, and sensitivity based on the 10-fold crossvalidation and these results are superior to those from other classification algorithms. In addition, a posteri probability of the predicted class can be used to measure the prediction reliability of PESFAM. The experiments demonstrate the potential of the proposed multiple SFAM classifiers in offering an optimal solution to the data-ordering problem of SFAM implementation and also as an intelligent medical diagnosis tool.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 11 )