By Topic

Minimum variance distortionless response spectral estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In this article, we concentrate on spectral estimation techniques that are useful in extracting the features to be used by automatic speech recognition (ASR) system. As an aid to understanding the spectral estimation process for speech signals, we adopt the source filter model of speech production as presented in X. Huang et al. (2001), wherein speech is divided into two broad classes: voiced and unvoiced. Voiced speech is quasi-periodic, consisting of a fundamental frequency corresponding to the pitch of a speaker, as well as its harmonics. Unvoiced speech is stochastic in nature and is best modeled as white noise convolved with an infinite impulse response filter.

Published in:

IEEE Signal Processing Magazine  (Volume:22 ,  Issue: 5 )