Cart (Loading....) | Create Account
Close category search window
 

Spin transport in organics and organic spin devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu, Z.G. ; SRI Int., Menlo Park, CA, USA ; Berding, M.A. ; Krishnamurthy, S.

The authors present a theory to describe spin transport across a polymer sandwiched between magnetic contacts and propose organic spin devices based on this theory. It is found that even a weak magnetic field can significantly modify spin transport in polymers through spin precession. This sensitivity can be exploited to design ultrasensitive magnetometers and low-power magnetic-field-effect transistors. It is shown that, at room temperature, the organic magnetometers are capable of detecting sub-nanotesla magnetic fields, and the I-V characteristics of the magnetic-field-effect transistors can be strongly modified by magnetic fields of a few gauss with response times of a few nanoseconds.

Published in:

Circuits, Devices and Systems, IEE Proceedings -  (Volume:152 ,  Issue: 4 )

Date of Publication:

5 Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.