By Topic

Measurement and modeling of the electron impact-ionization coefficient in silicon up to very high temperatures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
S. Reggiani ; Dipt. di Elettronica,, Bologna Univ., Italy ; E. Gnani ; M. Rudan ; G. Baccarani
more authors

In this paper, an experimental investigation on high-temperature electron impact-ionization in silicon is carried out with the aim of improving the qualitative and quantitative understanding of carrier transport under electrostatic discharge (ESD) conditions. Special test devices were designed and manufactured using Infineon's SPT5 technology, namely: a bipolar junction transistor (BJT), a static-induction transistor (SIT) and a vertical DMOS transistor (VDMOS), all of them with a cylindrical geometry. The measurements were carried out using a customized measurement setup that allows very high operating temperatures to be reached. A novel extraction methodology allowing for the determination of the impact-ionization coefficient against electric field and lattice temperature has been used. The experiments, carried out up to 773 K, confirm a previous theoretical investigation on impact-ionization, and widely extend the validity range of the compact model here proposed for implementation in device simulation tools. This is especially useful to predict the failure threshold of ESD-protection and power devices.

Published in:

IEEE Transactions on Electron Devices  (Volume:52 ,  Issue: 10 )