By Topic

Design approach using tunnel diodes for lowering power in differential comparators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qingmin Liu ; Dept. of Electr. Eng., Univ. of Notre Dame, IN, USA ; A. Seabaugh

Adding two clocked tunnel diode pairs to the output ports of a differential amplifier enables high-speed current-mode switching at a lower tail current than in a transistor-only differential pair. The addition of the tunnel diodes also lowers the output open-circuit time constant of the differential pair leading to faster switching speed. As a design example, a return-to-zero D flip-flop is simulated for use as the decision circuit in a single-bit oversampling digital-to-analog converter. Indium phosphide-based heterojunction bipolar transistors and resonant tunneling diodes are used in the model simulation; both conventional and tunnel-diode-augmented circuits are compared. Power dissipation of 3.5 mW/latch at 100-GHz clock frequency with 60-dBc spur-free dynamic range (SFDR) is obtained in the tunnel diode/transistor flip-flop. In comparison with the transistor-only approach, power is reduced by approximately 1.6× at the same speed and SFDR.

Published in:

IEEE Transactions on Circuits and Systems II: Express Briefs  (Volume:52 ,  Issue: 9 )