Cart (Loading....) | Create Account
Close category search window
 

Improvement of the energy efficiency in the decomposition of dilute trichloroethylene by the barrier discharge plasma process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
SangBo Han ; Dept. of Electr. Eng., Univ. of Kyungnam, Masan-City, South Korea ; Oda, T. ; Ono, R.

In order to improve the energy efficiency in the dilute trichloroethylene (TCE) removal by the nonthermal plasma process, the barrier discharge reactor was studied experimentally. It is investigated by combining it with catalyst of manganese dioxide at the downstream of the barrier discharge reactor. Decomposition efficiency by the barrier discharge reactor was about 83% at the gas flow rate 2 L/min, where the dilute TCE concentration is 250 ppm. Decomposition efficiency with passing through manganese dioxide was improved about 99% at the specific energy of 40 J/L. However, other by-products including ozone and oxidation by-products such as DCAC and TCAA were detected by the gas chromatograph mass spectrometry or the Fourier transform infrared spectroscope measurement. DCAC is generated at the plasma reactor, but TCAA is generated at catalyst during ozone decomposition. COx yield increased about twice with passing through catalyst in the Direct Process. Nitric oxides such as NO, NO2, and N2O did not generate so much in this barrier discharge process. The dielectric barrier discharge process combined with manganese dioxide is considered as a very desirable way to improve the energy efficiency.

Published in:

Industry Applications, IEEE Transactions on  (Volume:41 ,  Issue: 5 )

Date of Publication:

Sept.-Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.