By Topic

Interval fuzzy modeling applied to Wiener models with uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
I. Skrjanc ; Fac. of Electr. Eng., Ljubljana Univ., Slovenia ; S. Blazic ; O. E. Agamennoni

This correspondence addresses the problem of interval fuzzy model identification and its use in the case of the robust Wiener model. The method combines a fuzzy identification methodology with some ideas from linear programming theory. On a finite set of measured data, an optimality criterion which minimizes the maximum estimation error between the data and the proposed fuzzy model output is used. The min-max optimization problem can then be seen as a linear programming problem that is solved to estimate the parameters of the fuzzy model in each fuzzy domain. This results in lower and upper fuzzy models that define the confidence interval of the observed data. The model is called the interval fuzzy model and is used to approximate the static nonlinearity in the case of the Wiener model with uncertainties. The resulting model has the potential to be used in the areas of robust control and fault detection.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:35 ,  Issue: 5 )