Cart (Loading....) | Create Account
Close category search window

Neural approximation of open-loop feedback rate control in satellite networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Baglietto, M. ; Dept. of Commun., Univ. of Genoa, Italy ; Davoli, Franco ; Marchese, Mario ; Mongelli, Maurizio

A resource allocation problem for a satellite network is considered, where variations of fading conditions are added to those of traffic load. Since the capacity of the system is finite and divided in finite discrete portions, the resource allocation problem reveals to be a discrete stochastic programming one, which is typically NP-Hard. In practice, a good approximation of the optimal solution could be obtained through the adoption of a closed-form expression of the performance measure in steady-state conditions. Once we have summarized the drawbacks of such optimization strategy, we address two novel optimization approaches. The first one derives from Gokbayrak and Cassandras and is based on the minimization over the discrete constraint set using an estimate of the gradient, obtained through a "relaxed continuous extension" of the performance measure. The computation of the gradient estimation is based on infinitesimal perturbation analysis (IPA). Neither closed forms of the performance measures, nor additional feedbacks concerning the state of the system and very mild assumptions about the stochastic environment are requested. The second one is the main contribution of the present work, and is based on an open-loop feedback control (OLFC) strategy, aimed at providing optimal reallocation strategies as functions of the state of the network. The optimization approach leads us to a functional optimization problem, and we investigate the adoption of a neural network-based technique, in order to approximate its solution. As is shown in the simulation results, we obtain near-optimal reallocation strategies with a small real time computational effort and avoid the suboptimal transient periods introduced by the IPA gradient descent algorithm.

Published in:

Neural Networks, IEEE Transactions on  (Volume:16 ,  Issue: 5 )

Date of Publication:

Sept. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.