By Topic

An artificial immune system approach with secondary response for misbehavior detection in mobile ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sarafijanovic, S. ; Ecole Polytechnique Fed. de Laussane, Lausanne, Switzerland ; Le Boudec, J.-Y.

In mobile ad hoc networks, nodes act both as terminals and information relays, and they participate in a common routing protocol, such as dynamic source routing (DSR). The network is vulnerable to routing misbehavior, due to faulty or malicious nodes. Misbehavior detection systems aim at removing this vulnerability. In this paper, we investigate the use of an artificial immune system (AIS) to detect node misbehavior in a mobile ad hoc network using DSR. The system is inspired by the natural immune system (IS) of vertebrates. Our goal is to build a system that, like its natural counterpart, automatically learns, and detects new misbehavior. We describe our solution for the classification task of the AIS; it employs negative selection and clonal selection, the algorithms for learning and adaptation used by the natural IS. We define how we map the natural IS concepts such as self, antigen, and antibody to a mobile ad hoc network and give the resulting algorithm for classifying nodes as misbehaving. We implemented the system in the network simulator Glomosim; we present detection results and discuss how the system parameters affect the performance of primary and secondary response. Further steps will extend the design by using an analogy to the innate system, danger signal, and memory cells.

Published in:

Neural Networks, IEEE Transactions on  (Volume:16 ,  Issue: 5 )