By Topic

Image decomposition via the combination of sparse representations and a variational approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Starck, J.-L. ; CEA-Saclay, Gif sur Yvette, France ; Elad, M. ; Donoho, D.L.

The separation of image content into semantic parts plays a vital role in applications such as compression, enhancement, restoration, and more. In recent years, several pioneering works suggested such a separation be based on variational formulation and others using independent component analysis and sparsity. This paper presents a novel method for separating images into texture and piecewise smooth (cartoon) parts, exploiting both the variational and the sparsity mechanisms. The method combines the basis pursuit denoising (BPDN) algorithm and the total-variation (TV) regularization scheme. The basic idea presented in this paper is the use of two appropriate dictionaries, one for the representation of textures and the other for the natural scene parts assumed to be piecewise smooth. Both dictionaries are chosen such that they lead to sparse representations over one type of image-content (either texture or piecewise smooth). The use of the BPDN with the two amalgamed dictionaries leads to the desired separation, along with noise removal as a by-product. As the need to choose proper dictionaries is generally hard, a TV regularization is employed to better direct the separation process and reduce ringing artifacts. We present a highly efficient numerical scheme to solve the combined optimization problem posed by our model and to show several experimental results that validate the algorithm's performance.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 10 )