By Topic

Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shoker, L. ; Centre of Digital Signal Process., Cardiff Univ., UK ; Sanei, S. ; Chambers, J.

Artifacts such as eye blinks and heart rhythm (ECG) cause the main interfering signals within electroencephalogram (EEG) measurements. Therefore, we propose a method for artifact removal based on exploitation of certain carefully chosen statistical features of independent components extracted from the EEGs, by fusing support vector machines (SVMs) and blind source separation (BSS). We use the second-order blind identification (SOBI) algorithm to separate the EEG into statistically independent sources and SVMs to identify the artifact components and thereby to remove such signals. The remaining independent components are remixed to reproduce the artifact-free EEGs. Objective and subjective assessment of the simulation results shows that the algorithm is successful in mitigating the interference within EEGs.

Published in:

Signal Processing Letters, IEEE  (Volume:12 ,  Issue: 10 )