By Topic

Fast object tracking using adaptive block matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hariharakrishnan, K. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Chicago, IL, USA ; Schonfeld, D.

We propose a fast object tracking algorithm that predicts the object contour using motion vector information. The segmentation step common in region-based tracking methods is avoided, except for the initialization of the object. Tracking is achieved by predicting the object boundary using block motion vectors followed by updating the contour using occlusions/disocclusion detection. An adaptive block-based approach has been used for estimating motion between frames. An efficient modulation scheme is used to control the gap between frames used for motion estimation. The algorithm for detecting disocclusion proceeds in two steps. First, uncovered regions are estimated from the displaced frame difference. These uncovered regions are classified into actual disocclusions and false alarms by observing the motion characteristics of uncovered regions. Occlusion and disocclusion are considered as dual events and this relationship is explained in detail. The algorithm for detecting occlusion is developed by modifying the disocclusion detection algorithm in accordance with the duality principle. The overall tracking algorithm is computationally superior to existing region-based methods for object tracking. The immediate applications of the proposed tracking algorithm are video compression using MPEG-4 and content retrieval based on standards like H.264. Preliminary simulation results demonstrate the performance of the proposed algorithm.

Published in:

Multimedia, IEEE Transactions on  (Volume:7 ,  Issue: 5 )