Cart (Loading....) | Create Account
Close category search window

Mapping statistical process variations toward circuit performance variability: an analytical modeling approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu Cao ; Department of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; Clark, L.T.

A physical yet compact gate delay model is developed integrating short-channel effects and the Alpha-power law based timing model. This analytical approach accurately predicts both nominal delay and delay variability over a wide range of bias conditions, including sub-threshold. Excellent model scalability enables efficient mapping between process variations and delay variability at the circuit level. Based on this model, relative importance of physical effects on delay variability has been identified. While effective channel length variation is the leading source for variability at current 90nm node, performance variability is actually more sensitive to threshold variation at the sub-threshold region. Furthermore, this model is applied to investigate the limitation of low power design techniques in the presence of process variations, particularly dual Vth and L biasing. Due to excessive variability under low VDD, these techniques become ineffective.

Published in:

Design Automation Conference, 2005. Proceedings. 42nd

Date of Conference:

13-17 June 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.