Cart (Loading....) | Create Account
Close category search window
 

Circuit optimization using statistical static timing analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Agarwal, A. ; Michigan Univ., Ann Arbor, MI, USA ; Chopra, K. ; Blaauw, D. ; Zolotov, V.

In this paper, we propose a new sensitivity based, statistical gate sizing method. Since circuit optimization effects the entire shape of the circuit delay distribution, it is difficult to capture the quality of a distribution with a single metric. Hence, we first introduce a new objective function that provides an effective measure for the quality of a delay distribution for both ASIC and high performance designs. We then propose an efficient and exact sensitivity based pruning algorithm based on a newly proposed theory of perturbation bounds. A heuristic approach for sensitivity computation which relies on efficient computation of statistical slack is then introduced. Finally, we show how the pruning and statistical slack based approaches can be combined to obtain nearly identical results compared with the brute-force approach but with an average run-time improvement of up to 89×. We also compare the optimization results against that of a deterministic optimizer and show an improvement up to 16% in the 99-percentile circuit delay and up to 31% in the standard deviation for the same circuit area.

Published in:

Design Automation Conference, 2005. Proceedings. 42nd

Date of Conference:

13-17 June 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.