By Topic

Temperature-aware resource allocation and binding in high-level synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mukherjee, R. ; Dept. of Electr. & Comput. Eng., Northwestern Univ., USA ; Ogrenci Memik, S. ; Memik, G.

Physical phenomena such as temperature have an increasingly important role in performance and reliability of modern process technologies. This trend will only strengthen with future generations. Attempts to minimize the design effort required for reaching closure in reliability and performance constraints are agreeing on the fact that higher levels of design abstractions need to be made aware of lower level physical phenomena. In this paper, we investigated techniques to incorporate temperature-awareness into high-level synthesis. Specifically, we developed two temperature-aware resource allocation and binding algorithms that aim to minimize the maximum temperature that can be reached by a resource in a design. Such a control scheme will have an impact on the prevention of hot spots, which in turn is one of the major hurdles in front of reliability for future integrated circuits. Our algorithms are able to reduce the maximum attained temperature by any module in a design by up to 19.6°C compared to a binding that optimizes switching power.

Published in:

Design Automation Conference, 2005. Proceedings. 42nd

Date of Conference:

13-17 June 2005