By Topic

An architecture for next-generation radio access networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ghosh, S. ; Texas Univ., Arlington, TX, USA ; Basu, K. ; Das, S.K.

With fourth-generation wireless technologies envisioned to provide high bandwidth for content-rich multimedia applications, next-generation mobile communication systems are well poised to lead the technology march. Incumbent with the new technology is the challenge of providing flexible, reconfigurable architectures capable of catering to the dynamics of the network, while providing cost-effective solutions for service providers. In this article we focus on IP-based radio access network architectures for next-generation mobile systems. We provide an insight into wireless mesh-based connectivity for the RAN network elements - using short high-bandwidth links to interconnect the network entities in a multihop mesh network for backhauling traffic to the core. A generic self-similar fractal topology, using optical wireless transmission technology, is described. We study the performance of the architecture and conclude that mesh-based architectures are well suited to provide highly scalable, dynamic radio access networks with carrier-class features at significantly low system costs.

Published in:

Network, IEEE  (Volume:19 ,  Issue: 5 )