By Topic

Microembolic signal characterization using adaptive chirplet expansion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu Zhang ; Digital Signal Process., Nat. Instruments, China ; Hong Zhang ; Nanxiong Zhang

The adaptive chirplet expansion (ACE) is proposed to characterize high-intensity, transient signals from circulating microemboli. The nonnegative adaptive spectrogram based on the ACE gives a compact representation of the microembolic signal (MES) in joint-time, frequency domain. The mean instantaneous power (MIP) and mean instantaneous frequency (MIF) of MES are estimated from the adaptive spectrogram. Then, several important characteristics of MES, such as embolus-to-blood ratio (EBR), half width maximum (HWM), and embolic signal onset (ESO), are computed from the MIP, and the frequency modulation is examined in the MIF. To validate the new method, we improved the simulation model of the audio Doppler ultrasound signal. Some MESs together with a Doppler ultrasound signal from carotid blood flow are simulated in the simulation study. As a comparison, the adaptive Gabor expansion (AGE) also is implemented on these simulated signals. The experimental results of the simulation study show that the new method, based on the ACE, outperforms the AGE-based method in MES characterization. The consistent conclusion has been confirmed by the clinical study on some clinical MESs.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:52 ,  Issue: 8 )