By Topic

Low voltage surface transverse wave oscillators for the next generation CMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Avramov, I.D. ; Inst. of Solid State Phys., Bulgarian Acad. of Sci., Sofia, Bulgaria

The design and performance of voltage controlled surface transverse wave oscillators (VCSTWO) in the lower Gigahertz frequency range, operating on supply and tuning voltages in the 1.2 to 3.3 V range, and suitable for direct interfacing with the next generation CMOS circuits are presented. By applying the "boost" principle, as used in direct current (DC)-DC converters, to the design of the sustaining amplifier, the VCSTWO outputs are switched between 0 V and a positive peak value, exceeding the supply voltage U/sub s/, to provide safe CMOS-circuit switching while keeping the radio frequency (RF)/DC efficiency to a maximum for low DC power consumption. The investigated 1.0 and 2.5 GHz VCSTWO is a varactor tuned feedback-loop oscillator stabilized with two-port surface transverse wave (STW) resonators. Each VCSTWO has a DC-coupled, high-impedance switched output to drive the CMOS circuit directly, and an additional sinusoidal 50 /spl Omega/ high-power reference output available for other low-noise system applications. Phase noise levels in the -103 to -115 dBc/Hz range at 1 kHz carrier offset are achieved with 1.0 GHz VCSTWO at a RF/DC efficiency in the 21 to 29% range. The 2.5 GHz prototypes demonstrate phase noise levels in the -97 to -102 dBc/Hz range at 1 kHz carrier offset, and efficiencies range between 8 and 15%.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:52 ,  Issue: 8 )