By Topic

Lattice Boltzmann Simulation of Electroosmotic Flows in Micro- and Nanochannels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fuzhi Tian ; University of Alberta ; Baoming Li ; Kwok, Daniel Y.

A Lattice Boltzmann Model (LBM) with the Poisson-Boltzmann equation for charge distribution is presented for the simulation of electroosmotic transport in straight rectangular micro- and nanochannels. Effects of the channel height, electrolyte concentration, surface potential, electric double layer thickness and externally applied electric field on the velocity profile of 50 to 800 nm channels were studied by means of a LBM. Our results are in excellent agreement with the corresponding analytical solution and the Lattice Boltzmann Model can be used to simulate electrokinetic transport phenomena in microchannels in the presence of an externally applied electric field.

Published in:

MEMS, NANO and Smart Systems, 2004. ICMENS 2004. Proceedings. 2004 International Conference on

Date of Conference:

25-27 Aug. 2004