By Topic

Maximal causality analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schneider, K. ; Dept. of Comput. Sci., Kaiserslautern Univ., Germany ; Brandt, J. ; Schuele, T. ; Tuerk, T.

Perfectly synchronous systems immediately react to the inputs of their environment, which may lead to so-called causality cycles between actions and their trigger conditions. Algorithms to analyze the consistency of such cycles usually extend data types by an additional value to explicitly indicate unknown values. In particular, Boolean functions are thereby extended to ternary functions. However, a Boolean function usually has several ternary extensions, and the result of the causality analysis depends on the chosen ternary extension. In this paper, we show that there always is a maximal ternary extension that allows one to solve as many causality problems as possible. Moreover, we elaborate the relationship to hazard elimination in hardware circuits, and finally show how the maximal ternary extension of a Boolean function can be efficiently computed by means of binary decision diagrams.

Published in:

Application of Concurrency to System Design, 2005. ACSD 2005. Fifth International Conference on

Date of Conference:

7-9 June 2005