Cart (Loading....) | Create Account
Close category search window

Suturing in confined spaces: constrained motion control of a hybrid 8-DoF robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kapoor, Ankur ; Dept. of Comput. Sci., Johns Hopkins Univ., Baltimore, MD ; Simaan, N. ; Taylor, R.H.

We present our work on developing and testing the high-level control for a future telerobotic system for minimally invasive surgery of the throat and upper airways. As a test-bed for these experiments, we used a hybrid 8 degrees-of-freedom (DoF) experimental robot composed of a six DoF robot and a two DoF snake-like unit. The kinematics and weighted redundancy resolution to support suturing in confined spaces, such as the throat, is developed and experimental validation in presented. The kinematics of the hybrid system is described in an 8-dimensional augmented vector space composed from the joint variables of the six DoF robot and two angles describing the configuration of the snake-like unit. Then a weighted, multi objective, optimization framework is used to perform the suturing operation under the assumption of a predefined suture geometry while satisfying joint limits, torque constraints, and minimizing extraneous motions of the system joints

Published in:

Advanced Robotics, 2005. ICAR '05. Proceedings., 12th International Conference on

Date of Conference:

18-20 July 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.